Wednesday 26 July 2017

Differenz Zwischen Bewegen Durchschnitt Und Autoregressiv


Ein RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel mißt eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander getrennt sind, über die gesamte Reihe miteinander korrelieren. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden mittleren Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter einzuschließen sind. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Deshalb ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft. Was sind die Unterschiede zwischen autoregressiven und gleitenden Durchschnittsmodellen2. Warum 1. Was sind die Unterschiede zwischen autoregressiven und gleitenden Durchschnittsmodellen 2. Warum können ARMA-Modelle als besonders nützlich für finanzielle Zeitreihen betrachtet werden Erläutern Sie ohne die Verwendung von Gleichungen oder mathematischen Notationen den Unterschied zwischen AR-, MA - und ARMA-Prozessen. 3. Betrachten Sie die folgenden drei Modelle, die ein Forscher vorschlägt, könnte ein vernünftiges Modell der Börsenkurse sein (a) Welche Klassen von Modellen sind diese Beispiele von (b) Wie würde die Autokorrelationsfunktion für jeden dieser Prozesse aussehen? (C) Welches Modell ist eher die Börsenkurse aus einer theoretischen Perspektive zu repräsentieren, und warum, wenn einer der drei, müssen die Acf zu berechnen, einfach zu prüfen, welche Form es hätte die Klasse des Modells, aus denen es gezogen werden könnte gegeben haben Modelle repräsentiert wirklich die Art und Weise Börsenkurse bewegen, die möglicherweise verwendet werden, um Geld durch die Prognose zukünftiger Werte der Serie (d) durch eine Reihe von sukzessiven Substitutionen oder aus Ihrem Wissen über das Verhalten dieser Arten von Prozessen, betrachten die Ausmaß der Beharrlichkeit von Schocks in der Reihe in jedem Fall. Antwort Vorschau Beantwortet am: August 17, 2016 Die autoregressiven (AR) Prozesse haben unendliche Nicht-Null Autokorrelationskoeffizienten, die mit der Verzögerung abnehmen. Die AR-Prozesse haben einen relativ ldquolongrdquo-Speicher, da der aktuelle Wert einer Reihe mit allen vorherigen korreliert ist, obgleich mit abnehmenden Koeffizienten. Dies impliziert, dass wir einen AR-Prozess als eine lineare Funktion aller seiner Innovationen schreiben können, mit Gewichten, die mit der Verzögerung zu Null neigen. Die AR-Prozesse können keine kurzen Speicherreihen darstellen, wobei der aktuelle Wert der Serie nur mit einer kleinen Anzahl von vorherigen Werten korreliert wird. Eine Familie von Prozessen, die diese ldquovery kurze memoryrdquo Eigenschaft haben, sind der gleitende Durchschnitt oder MA Prozesse. Die MA-Prozesse sind eine Funktion einer endlichen und in der Regel kleinen Anzahl ihrer bisherigen Innovationen. Ein Grund, warum die ARMA-Prozesse häufig in der Praxis zu finden sind, ist, dass die Summierung von AR-Prozessen zu einem ARMA-Prozess führt. Die ersten beiden Modelle sind grob gesagt AR (1) - Modelle, während die letzte ein MA (1) ist. Streng, da das erste Modell ein zufälliger Weg ist, sollte es ein ARIMA (0,1,0) - Modell genannt werden, aber es könnte immer noch als ein Spezialfall eines autoregressiven Modells We8230 ow angesehen werden, dass die theoretische acf eines MA ( Q) Der Prozess ist null, wenn q nachläuft, so dass die ACF des MA (1) bei allen Verzögerungen nach eins Null sein wird. Für einen autoregressiven Prozess stirbt der Akf allmählich ab. Er wird für Fall (2) ziemlich schnell abklingen, wobei jeder sukzessive Autokorrelationskoeffizient einen Wert annimmt, der der Hälfte des vorherigen Verzögerungswertes entspricht. Für den ersten Fall jedoch wird die acf niemals sterben, und in der Theorie wird immer auf einen Wert von eins, was auch immer die Verzögerung. Wendet man sich nun dem pacf zu, würde der pacf für die ersten beiden Modelle eine große positive Spitze bei Verzögerung 1 und keine statistisch signifikanten pacfrsquos bei anderen Verzögerungen aufweisen. Wiederum würde der Einheitsrootprozeß von (1) einen pacf haben, der demjenigen eines stationären AR entspricht. PAutoregressive Moving Average Fehlerprozesse 13 13 13 13 13 13 Autoregressive gleitende mittlere Fehlerprozesse (ARMA-Fehler) und andere Modelle mit Verzögerungen von Fehlertermen können Unter Verwendung von FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Sie Modelle mit gleitenden mittleren Fehlerprozessen angeben. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s sind unabhängig und identisch verteilt und haben einen erwarteten Wert von 0. Ein Beispiel für ein Modell mit einer AR (2) Komponente Sie würden dieses Modell wie folgt schreiben: oder äquivalent das AR-Makro als Durchschnitt Modelle 13 A Umzug Modell mit mittleren Durchschnittsfehlern erster Ordnung, MA (1), hat die Form, in der identisch und unabhängig verteilt mit Mittelwert Null ist. Ein MA (2) - Fehlerprozeß hat die Form und so weiter für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Durchschnittsparameter sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL als Hinweis definiert wird, dass RESID. Y ist. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen abzuschneiden. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und keine fehlenden Werte propagieren, wenn Lag-Priming-Periodenvariablen fehlen und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Lag-Funktionen finden Sie im Abschnitt 34Lag Logic.34 Dieses Modell Makro mit der MA geschrieben ist General Formular für ARMA Modelle Die allgemeine ARMA (p, q) Prozess hat das folgende Formular ein ARMA (p, q) Modell kann sein Wie folgt angegeben, wobei AR i und MA j die autoregressiven und sich bewegenden Durchschnittsparameter für die verschiedenen Verzögerungen darstellen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozess für die Fehler der beiden endogenen Variablen Y1 und Y2 folgendermaßen spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von .001 für ARMA-Parameter arbeiten in der Regel, wenn das Modell die Daten gut passt und das Problem ist gut konditioniert. Man beachte, dass ein MA-Modell oft durch ein AR-Modell höherer Ordnung angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können nun die ARMA-Parameterschätzwerte konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen 13 13 13 13 13 13 13 13 13 13 13 13 Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die autoregressiven Fehlerstartmethoden von SASETS Verfahren unterstützt sind die folgenden: CLS bedingten kleinsten Quadrate (ARIMA und MODEL Verfahren) ULS unbedingten kleinsten Quadrate (AUTOREG, ARIMA und MODEL Verfahren) ML Maximum-Likelihood (AUTOREG, ARIMA und MODEL Verfahren) YW Yule - Walker (AUTOREG Verfahren nur) HL Hildreth-Lu, die die ersten p Beobachtungen (MODEL Verfahren nur) löscht Siehe Kapitel 8. eine Erläuterung und Diskussion über die Vorzüge der verschiedenen AR (p) den Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Bei AR (1) Fehlern können diese Initialisierungen wie in Tabelle 14.2 dargestellt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 14.2: Initialisierungen Aufgeführt von PROC MODELL: AR (1) FEHLER MA Anfangsbedingungen 13 13 13 13 13 13 Die anfängliche Lags der Fehler hinsichtlich der MA (q) Modelle können auch auf unterschiedliche Weise modelliert werden. Die folgende gleitenden Durchschnitt Start Paradigmen Fehler werden durch die ARIMA und MODEL Verfahren unterstützt: ULS unbedingten kleinsten Quadrate CLS bedingten kleinsten Quadrate ML Maximum-Likelihood Die bedingte Methode der kleinsten Quadrate der mittleren Fehler hinsichtlich bewegen Schätzung nicht optimal ist, weil es das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Kleinste-Quadrate-Residuen für die gleitende mittlere Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Sie sollten eine AR (p) - Näherung für den gleitenden Durchschnittsprozess in Betracht ziehen. Ein gleitender Durchschnittsprozess kann üblicherweise durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert wurden. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für univariate Autoregression uneingeschränkte Vektorautoregression eingeschränkte Vektorautoregression verwendet werden. Univariate Autoregression 13 Um den Fehlerterm einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine lineare Funktion von X1 und X2 und ein AR (2) - Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der aufrufende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 14.49 gezeigten Aussagen. Abbildung 14.50: LIST-Optionenausgabe für ein AR-Modell mit Lags bei 1, 12 und 13 Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie verwendet werden, um den AR-Prozess zu aktivieren. Die AR-bedingte Kleinste-Quadrate-Methode verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die anfänglichen Verzögerungen autoregressiver Terme an. Wenn Sie die Option M verwenden, können Sie anfordern, dass AR die unconditional least-squares (ULS) oder Maximum-Likelihood (ML) - Methode verwendet. Zum Beispiel: Die Diskussion dieser Methoden ist in den 34AR Anfangsbedingungen34 früher in diesem Abschnitt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie zum Beispiel die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 14.51 dargestellte Ausgabe. Die MODEL-Prozedurauflistung der kompilierten Programmcodeaussage als analysiert PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y) yl2 ZLAG2 (y ) Yl3 ZLAG3 (y) yl4 ZLAG4 (y) yl5 ZLAG5 (y) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Abbildung 14.51: LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y Als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression 13 Um die Fehlerterme eines Gleichungssatzes als vektorautoregressiven Prozess zu modellieren, verwenden Sie die folgenden Formulare des AR-Makros nach den Gleichungen: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für das zu verwenden Autoregressive Parameter. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Namens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 Folgendes generieren: Für Vektorprozesse kann nur die Methode der bedingten Kleinste-Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Beispielsweise wenden die Anweisungen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler an, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind. Sie können die drei Serien Y1-Y3 als vektorautoregressiven Prozess in den Variablen anstatt in den Fehlern mit der Option TYPEV modellieren. Wenn Sie Y1-Y3 als Funktion von vergangenen Werten von Y1-Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 mal 3 3 mal 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Der erste hat den allgemeinen Formularnamen, der ein Präfix für AR spezifiziert, das beim Erstellen von Namen von Variablen verwendet wird, die für die Definition des AR-Prozesses erforderlich sind. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf nicht länger als acht Zeichen sein. Nlag ist die Reihenfolge des AR-Prozesses. Endolist spezifiziert die Liste der Gleichungen, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Laglist gibt die Liste der Lags an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Lags müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. M-Methode gibt das zu implementierende Schätzverfahren an. Gültige Werte von M sind CLS (bedingte Kleinste-Quadrate-Schätzungen), ULS (unbedingte Kleinste-Quadrate-Schätzungen) und ML (Maximum-Likelihood-Schätzungen). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben wird. Die ULS - und ML-Methoden werden für AR-AR-Modelle von AR nicht unterstützt. TYPEV gibt an, dass das AR-Verfahren auf die endogenen Variablen anstatt auf die strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektorautoregression 13 13 13 13 Sie können steuern, welche Parameter in den Prozess eingeschlossen werden und welche Parameter nicht auf 0 gesetzt sind. Verwenden Sie zuerst AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Ausdrücke für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Verzögerungen zu generieren. Die erzeugten Fehlergleichungen Dieses Modell besagt, daß die Fehler für Y1 von den Fehlern sowohl von Y1 als auch von Y2 (aber nicht von Y3) bei beiden Verzögerungen 1 und 2 abhängen und daß die Fehler für Y2 und Y3 von den vorhergehenden Fehlern abhängen Für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für beschränkte Vektor-AR Eine alternative Verwendung von AR kann Einschränkungen für einen Vektor-AR-Prozess durch Aufruf von AR mehrmals aufrufen, um verschiedene AR-Terme und - Lags für verschiedene Gleichungen festzulegen. Der erste Aufruf hat den allgemeinen Formularnamen, der ein Präfix für AR spezifiziert, das beim Erstellen von Namen von Variablen verwendet wird, die für die Definition des Vektor-AR-Prozesses erforderlich sind. Nlag gibt die Reihenfolge des AR-Prozesses an. Endolist spezifiziert die Liste der Gleichungen, auf die der AR-Prozess angewendet werden soll. DEFER spezifiziert, daß AR nicht den AR-Prozeß erzeugen soll, sondern auf weitere Informationen, die in späteren AR-Aufrufen für denselben Namenwert spezifiziert werden, wartet. Die nachfolgenden Anrufe haben die allgemeine Form Name ist die gleiche wie im ersten Aufruf. Eqlist gibt die Liste der Gleichungen an, auf die die Spezifikationen in diesem AR-Aufruf angewendet werden sollen. Nur Namen, die im Endolistenwert des ersten Aufrufs für den Namenswert angegeben sind, können in der Liste der Gleichungen in eqlist erscheinen. Varlist gibt die Liste der Gleichungen an, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, wird varlist standardmäßig Endolist. Laglist gibt die Liste der Lags an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich dem Wert von nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet laglist standardmäßig alle Verzögerungen 1 bis nlag. Der MA-Makro 13 Der SAS-Makro MA generiert Programmieranweisungen für PROC MODEL zum Verschieben von Durchschnittsmodellen. Das Makro MA ist Teil der SASETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende mittlere Fehlerprozess kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros entspricht dem AR-Makro, außer es gibt kein TYPE-Argument. 13 Wenn Sie die kombinierten MA - und AR-Makros verwenden, muss das Makro MA dem AR-Makro folgen. Die folgenden SASIML-Anweisungen erzeugen einen ARMA-Fehlerprozess (1, (1 3)) und speichern ihn im Datensatz MADAT2. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells unter Verwendung der Maximum-Likelihood-Fehlerstruktur zu schätzen: Die Schätzungen der durch diesen Durchlauf erzeugten Parameter sind in Abbildung 14.52 dargestellt. Maximale Wahrscheinlichkeit ARMA (1, (1 3)) Abbildung 14.52: Schätzungen aus einem ARMA (1, (1 3)) Prozess-Syntax des MA-Makros Es gibt zwei Fälle der Syntax für das MA-Makro. Die erste hat den allgemeinen Formular Namen spezifiziert ein Präfix für MA, um beim Erstellen von Namen von Variablen benötigt, um die MA-Prozess zu definieren und ist die Standard-Endolist. Nlag ist die Reihenfolge des MA-Prozesses. Endolist spezifiziert die Gleichungen, auf die das MA-Verfahren angewendet werden soll. Wenn mehr als ein Name angegeben wird, wird die CLS-Schätzung für den Vektorprozess verwendet. Laglist gibt die Verzögerungen an, zu denen die MA-Bedingungen hinzugefügt werden sollen. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. M-Methode gibt das zu implementierende Schätzverfahren an. Gültige Werte von M sind CLS (bedingte Kleinste-Quadrate-Schätzungen), ULS (unbedingte Kleinste-Quadrate-Schätzungen) und ML (Maximum-Likelihood-Schätzungen). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung auf dem Endolisten angegeben ist. MA-Makro-Syntax für eingeschränkte Vektorbewegungen 13 Eine alternative Verwendung von MA ist es, Beschränkungen für einen Vektor-MA-Prozeß durch Aufrufen von MA mehrmals aufzuerlegen, um verschiedene MA-Terme und - Lags für verschiedene Gleichungen anzugeben. Der erste Aufruf hat den allgemeinen Formular Namen spezifiziert ein Präfix für MA, um beim Erstellen von Namen von Variablen für die Definition der Vektor-MA-Prozess zu verwenden. Nlag spezifiziert die Reihenfolge des MA-Prozesses. Endolist spezifiziert die Liste der Gleichungen, auf die das MA-Verfahren angewendet werden soll. DEFER spezifiziert, daß MA nicht den MA-Prozeß erzeugen soll, sondern auf weitere Informationen, die in späteren MA-Aufrufen für denselben Namenwert spezifiziert werden, wartet. Die nachfolgenden Anrufe haben die allgemeine Form Name ist die gleiche wie im ersten Aufruf. Eqlist gibt die Liste der Gleichungen an, auf die die Spezifikationen in diesem MA-Aufruf angewendet werden sollen. Varlist gibt die Liste der Gleichungen an, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Laglist gibt die Liste der Verzögerungen an, zu denen die MA-Bedingungen hinzugefügt werden sollen.

No comments:

Post a Comment